
MAISON

Différentes techniques en chimie ECE Chimie

Première partie : un classique

Dosage/titrage d'une solution S_0 d'acide chlorhydrique par une solution d'hydroxyde de sodium de concentration $C_b=1,00.10^{-2}$ mol/L

Ecrire l'équation de la réaction :

Quelle est la relation entre les concentrations des 2 réactifs (Produit ionique de l'eau Ke)?

Compléter le schéma ci-contre avec les 2 solutions pour effectuer le dosage.

La solution dosée est 10 fois trop concentrée, c'est-à-dire la solution

On veut préparer Vs= 50 mL de la solution à titrée.

Calcul de Vp pour réaliser la dilution :

Protocole de la dilution :

- _
- _
- _
- Réalisez cette dilution.
- Préparez le dispositif expérimental avec la solution titrante dans la burette et V_S = 20 mL de la solution S diluée à titrée de concentration Cs dans le bécher. **Trois techniques sont possibles**

	Colorimétrie			pHmétrie	conductimétrie	
Formules autour de ces techniques	Un indicateur coloré est un couple acido-basique IndH/Ind- avec pH = pKa + log Domaine de prédominance			[H ₃ O ⁺] = ou pH=	σ = Σ ici σ =	
Questions classiques	le pH à l'équivalence est autour de 7 : Choisir le bon indicateur coloré. Indicateur coloré Hélianthine (orange de méthyle) I choisir le bon Couleurs virage 4,4 orange		Couleurs Rouge -	Pour immerger totalement la sonde, il est possible d'ajou de l'eau distillée. Pourquoi l'ajout d'eau ne change pas le résultat du dosage ? Définir l'équivalence :		MAISON
	Bleu de bromothymol Phénolphtaléine Ici :	6,0 - 7,6 8,2 - 10,5	Jaune - bleu Incolore - rouge	Quelle est la relation entre		

Pour des raisons de rapidité, nous allons réaliser les 3 techniques en même temps !

Introduire dans le bécher l'indicateur coloré adéquate, la sonde pHmétrique et conductimétrique. Ajouter de l'eau distillée pour que les sondes soient entièrement immergées.

Reporter vous dans le fichier Excel

Résultats

Colorimétrie	pHmétrie	conductimétrie
V _{éq} =	V _{éq} = par la méthode des ou l'extremum des	V _{éq} = par lecture graphique

Remarque : Commenter la courbe $\sigma = f(t)$ avant et après l'équivalence.

Calculez la concentration de la solution à titrée :

• Le z-score est un quotient qui compare l'écart entre une valeur obtenue expérimentalement et une valeur de référence, rapporté à l'incertitude de la mesure :

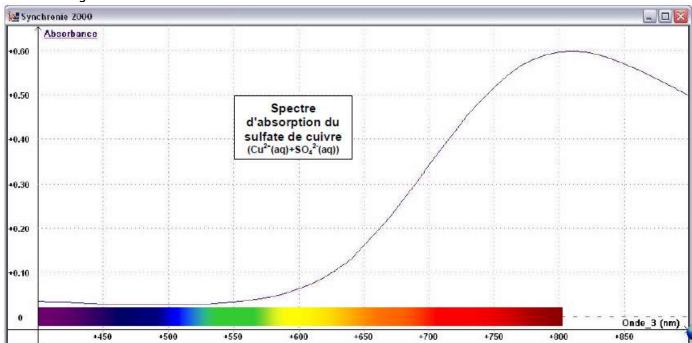
Selon le niveau de confiance que l'on souhaite accorder à l'expérience, il peut être admis comme critère que l'expérience est satisfaisante si z < 2.

 $C_{\text{th\'eo}}$ = Ca (th\'eo) = 7,5.10⁻² mol/L Calculer le Z score : u(Ca) = 2.10⁻³ mol/L

Deuxième partie : Acide fort - Acide faible

Vous disposez de 2 acides sur le bureau: l'acide chlorhydrique de concentration apportée c_1 = 1,0.10⁻³ mol/L et l'acide éthanoïque de concentration apportée c_2 = 1,0.10⁻³ mol/L

Proposer un protocole afin de déterminer si ces 2 acides sont forts ou faibles :


Troisième partie : Loi de Beer Lambert

L'objectif est de déterminer la concentration molaire d'une solution de sulfate de cuivre $Cu^{2+} + SO_4^{2-}$. Pour cela vous disposez :

- de 3 solutions de concentration connue de sulfate de cuivre

$$C_1 = 1.0.10^{-2} \text{ mol/L}, C_2 = 1.0.10^{-3} \text{ mol/L}, C_3 = 1.0.10^{-4} \text{ mol/L}$$

- De la courbe $A = f(\lambda)$ d'une solution sulfate de cuivre
- Du logiciel EXCEL

Proposez un protocole détaillé et déterminez la concentration molaire de la solution de sulfate de cuivre.

MALSOI

Quatrième partie : Suivi d'une réaction par spectrophotométrie

Comment estimer la durée nécessaire pour qu'une réaction soit terminée?

 $S_2 O_8^{2-}$ Réaction étudiée :

 $2 I^{-} \rightarrow 2 SO_{4}^{2-} +$

 I_2

Données:

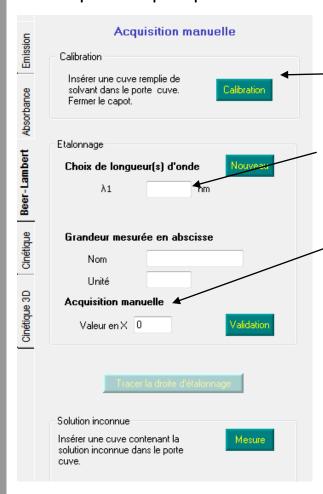
Dans cette réaction, le diiode I2 est la seule espèce colorée en solution. Dans le cas du diiode, l'absorbance est maximale pour une longueur d'onde à λ =470 nm.

Le mélange réactionnel est composé de V₁ = 10,0 mL de solution de peroxodisulfate de sodium $(2\text{Na} + + S_2 O_8^{2-})$ concentration en ion peroxodisulfate $[S_2 O_8^{2-}]_i = 1.0 \times 10^{-2} \text{ mol.L}^{-1}$ et de $V_2 = 10.0 \text{ mL}$ de solution d'iodure de potassium (K⁺ + I⁻) de concentration en ion iodure $[I^-]_i = 5,0 \times 10^{-1} \text{ mol.L}^{-1}$

Proposez un protocole détaillé et déterminez la durée pour laquelle la réaction est supposée terminée.

Déterminez le temps de ½ réaction

Quels sont les facteurs susceptibles d'accélérer la réaction?


Quel est le réactif pour lequel il serait judicieux d'augmenter sa concentration?

Cinquiàme pentie : Magunon une massa valumiana						
Cinquième partie : Mesurer une masse volumique						
Mélanger 10 mL d'eau et 10 mL de 3-méthylbutan-1-ol (isobutanol)						
Proposer un protocole pour déterminer la masse volumique du mélange						
Révisions manipulation en chimie	Page 5					

Matériel usuel en chimie

	Pissette d'eau distillée		Bécher	Les béchers sont gradués pour indiquer de manière approximative le volume de liquide qu'ils contiennent. Ils ne doivent en aucun cas être utilisés pour mesurer un volume.
	bouchon pour fiole		fiole jaugée	La fiole jaugée permet de mesurer un volume avec une bonne précision . Elle sert à dissoudre un solide dans un volume donné ou à diluer une solution.
	spatule		Éprouvette graduée	C'est un cylindre utilisé pour mesurer des volumes de liquides mais sa précision n'est pas très grande. On utilise une éprouvette graduée pour une mesure ne nécessitant pas une grande précision (à 0,5 ou 1 mL près selon la capacité de l'éprouvette).
Vider la poire. Aspirer le liquide Laisacr retocober le liquide	Poire à pipeter	and the	Pipette jaugée	une pipette jaugée est un contenant temporaire qui sert à transférer une solution d'un contenant dans un autre. La pipette jaugée, dont la contenance est fixe, permet de transférer très précisément un volume donné (par exemple 20 mL)
	Tube à essai	//	Pipette graduée	Une pipette graduée permet de mesurer le volume d'une solution à prélever. La pipette graduée est moins précise que la pipette jaugée.
Te	entonnoir à solide		Erlenmeyer	C'est le récipient idéal pour éviter toute projection de liquide. Il ne permet pas de prélèvement avec une pipette ou de faire passer une sonde de pH-mètre. Comme pour le bécher, les graduations ne sont pas précises.
	coupelle	1	Burette graduée	La burette permet de mesurer des volumes cumulés. Elle est principalement utilisée pour les dosages Attention au ménisque et à la parallaxe lors de la lecture (voir informations).
	verre de montre		Ampoule à décanter	L'ampoule à décanter est un instrument en verre utilisé pour séparer deux liquides non miscibles.
	balance	T	Verre à pied	Le verre à pied est en général utilisé comme poubelle.

Fiche simplifiée du spectrophotomètre

- 1- Brancher l'appareil sur le port Usb ; Une fenètre s'ouvre. Cliquez sur l'exécutable.
- 2- Insérer une cuve remplie d'eau distillée pour la calibration puis cliquez sur « Calibration ». Occultez le faisceau avec le « carrée » métallique noir. Puis suivre les instructions.
- 3- Déterminez à partir de la courbe $A = f(\lambda)$ la valeur de la longueur d'onde pour effectuer les mesures.
- 4- Définir la grandeur en abscisse : Ici la concentration C et son unité
- 5- Introduire la valeur de la concentration de la première solution.
- 6- Mesurer son absorbance.
- 7- Une croix apparait sur le graphe.
- 8- Cliquez sur nouveau en sauvegardant la mesure précédente.
- 9- Introduire la nouvelle valeur de la concentration.
- 10- Validez de nouveau...

Une fois les mesures réalisées, clic droit de la souris et sélectionnez « droite ». Positionnez votre droite puis tapez « Entrée ». La droite ne « bouge » plus. Avec le curseur effectuez votre mesure graphique.